Теория вероятностей

Теория вероятностей

Математика: Теория вероятностей

Закономерная вероятность

Как любая серьезная наука, теория вероятностей, развивалась в ответ на практические потребности человечества. Наблюдение за массовыми случайными явлениями, такими как заболеваемость, смертность, несчастные случаи, также приводили к мысли о выявлении неких закономерностей и необходимости специальной теории страхования. Однако, задача была достаточно сложной, так как вмешивалось много факторов, а начинать надо было с более простого материала.

    Азартные игры, исход которых зависел от случайности, был непредсказуем и не поддавался прогнозам, и послужили основой для возникновения вероятностной теории.

    Предпосылки возникновения

    В далеком XVII веке известнейший ученый Галилей, задумавшись над погрешностями в физических вычислениях, пытался подвергнуть научному анализу вероятность их достоверности. Ферма и Гюйгенс предметом исследования выбрали азартные игры, сформулировав базовые понятия, такие как «вероятность» и «математическое ожидание». Яков Бернулли вывел закон больших чисел, устанавливающий связь между событием и его повторяемостью, что впоследствии широко применялось в современной практике. Лаплас и Моавр анализировали ошибки в измерениях и наблюдениях, что привело к созданию доказательства в спектре теорем, объединенных общим названием – центральная предельная теорема. Разработанный Гауссом способ обработки данных, полученных при эксперименте, продвинул стремительно развивающуюся молодую науку еще на одну ступень.

    Увлечение теорией вероятности становится настолько популярным и модным, что ее методы начинают применять к фактам и явлениям, не входящим в ее компетенцию, например, к расчетам в «моральных» или «нравственных» категориях. Закономерные неудачи при этих попытках привели к тому, что на науку стали смотреть как на сомнительную, обвиняя ее последователей в шарлатанстве.

    Российская школа

    Поставить теорию вероятности на ноги, создав ей прочную научную основу, удалось ученым известной Петербургской математической школы.

    Буняковский, автор первого учебника по этой дисциплине, немало поработал над терминологией, систематизировав и упорядочив накопленный до него опыт. Впоследствии, благодаря таким выдающимся математикам, как Чебышев, Марков, Ляпунов, наука заняла достойное место в ряду математических дисциплин, а ее методы получили четкую сферу применения и были доведены до совершенства.

    Теория вероятностей сегодня

    Условно в теории вероятностей можно выделить три раздела:

    • изучение случайных событий;
    • случайных величин;
    • случайных процессов

    Событие, ожидаемое в результате опыта, может произойти или не произойти, например, пойдет или не пойдет сегодня снег. Более того, наиболее вероятными мы называем события, происходящие довольно часто, а маловероятными или невероятными те, что практически случаются редко, а то и вовсе никогда.

    Второй раздел науки занимается изучением величин, принимающих в результате одного и того же опыта, различные случайные значения, например, число звонков на ваш мобильный телефон в течение дня.

    Случайные процессы – это явления, поведение которых невозможно предсказать в течение какого-либо времени, например, рост прибыли или изменение стоимости валюты.

    В современных условиях, теория вероятностей стала прародительницей различных направлений исследований, связанных со спецификой практических потребностей науки и производства. Можно назвать такие дисциплины, как: математическая статистика, комбинаторный анализ, теории случайных процессов, массового обслуживания, информации и многие другие прикладные направления, созданные для поиска закономерностей в мире случайных величин.